考研线上培训机构
发布时间:2018年12月26日
新东方考研免费试听课程
-
考研英语小作文备考技巧
-
考研英语真题高频核心词总结
-
考研高等数学-函数极限的性质
-
毛中特必学考点解析
-
考研管综数学课程
-
考研管综逻辑课程
新东方考研选课中心
-
考研英语
录播+直播
-
考研政治
录播+直播
-
考研数学
录播+直播
-
管理类联考
录播+直播
-
法律硕士
录播+直播
-
翻译硕士
录播+直播
-
教育硕士
录播+直播
-
艺术硕士
录播+直播
-
金融硕士
录播+直播
-
西医专硕
录播+直播
-
心理学
录播+直播
-
更多专业课程
录播+直播
新东方考研套餐推荐
全程班
资深大咖+温暖领学陪练+一站式解决备考疑难。
详情>
直通车
大咖全程陪学带练+班主任1V1导学督学 +专属答疑老师1V1服务+批改服务
详情>
无忧计划
小班+主讲老师1v1规划答疑+ 定制择校报告+专属作文模板
详情>
新东方考研师资介绍
王江涛 风格鲜明、趣味十足
新东方考研英语首席主讲,写作辅导实力教师,新东方20周年功勋教师,英语学习畅销书作者。北京外国语大学英语语言文学学士,北京大学硕士,曾任中国政府代表团高级翻译出访欧美。多年考研英语教学经验。代表作:《考研英语高分写作》、《考研英语高分写作字帖》、《十天搞定考研词汇》等。
董仲蠡 清新脱俗、逻辑清晰
新东方在线实力教师,新东方20周年功勋教师。主讲四六级翻译。新东方教育科技集团教学培训师,新东方教育集团优秀教师。毕业于吉林大学,07年加入沈阳新东方学校。主授国内考试课程,横跨综合、词汇和阅读各类课程。英文底蕴深厚,课程充实紧凑,对考试分析透彻,考点把握精确。
杨超 思路清晰、轻松幽默
美国加州州立大学博士后,斯坦福大学访问学者。从事考研数学辅导十多年,把教学当乐趣,潜心研究考题,原创了很多快捷解法和秒杀公式,同时又提出在基础阶段练好三大计算(求极限导数积分)。
郝明 逻辑清晰、耐心专业
新东方考研政治学科负责人、主讲老师,集团优秀教师,马克思主义中国化硕士,十年考研政治一线教学经验,考研政治全能型教师,擅于从命题人的角度剖析知识考点,梳理重点难点。使学员轻松愉快的掌握破题套路,玩转考研政治。授课逻辑清晰、语言风趣幽默,深受学员欢迎的"好老师"。
张鑫 风格鲜明、幽默风趣
北京工业大学工科硕士,新东方在线管综数学教师,教学经验丰富,秉承"审题+结论=玩转教学!" 的教学理念,倡导"做题、变题、讲题"三步学习法,通过独特的思维训练让学员轻松提分。
做网络课程 我们是认真的
其他机构
-
经验少、不资深
-
课时太多看不完或太少知识点不全
-
无特别服务
-
无教材或教材不全
新东方在线考研
-
新东方明星师资阵容,全速助攻
-
直录博课程结合,自主选择学校时间
-
作文批改,知识堂答疑,考前诊断等等
-
全套精编密训资料,电子讲义
选择新东方在线的8个理由
-
专业名师
精选名师授课
授课经验丰富
-
教研团队
数百人教研团队
精细模块化分工
-
授课方法
直播、录播结合
学习效果事半功倍
-
培训经验
十数年辅导经验
提高复习效果
-
高清视频
涵盖考试重点难点
支持打包下载
-
上市机构
纽交所上市公司
全国数千家代理
-
正规公司
公司备案资质完整
安全可靠有保障
-
百强品牌
连获多项大奖
受到广泛认可
学习资料
【考研线上培训机构】
(1)导数和微分的概念;
(2)导数的几何意义和物理意义;
(3)函数的可导性与连续性之间的关系;
(4)平面曲线的切线和法线;
(5)导数和微分的四则运算;
(6)基本初等函数的导数;
(7)复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;
(8)高阶导数;
(9)一阶微分形式的不变性;
(10)微分中值定理;
(11)洛必达法则;
(12)函数单调性的判别;
(13)函数的极值;
(14)函数图形的凹凸性、拐点及渐近线;
(15)函数图形的描绘;
(16)函数的最大值和最小值;
(17)弧微分、曲率的概念;
(18)曲率圆与曲率半径(其中16、17只要求数一、数二考试掌握,数三考试不要求)。
2、考试要求
(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系;
(2)了解导数的物理意义,会用导数描述一些物理量(数一、数二要求,数三不要求);
(3)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分;
(4)了解高阶导数的概念,会求简单函数的高阶导数;
(5)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数;
(6)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理;
(7)掌握用洛必达法则求未定式极 限的方法;
(8)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用;
(9)会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形;
(10)了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径(数一、数二要求、数三不要求) 。
3、常考题型
(1)导数定义;