〖★优路内训★〗
环球优路教育以客户需求为导向,对建筑企业发展现状与企业资质匹配程度进行专业诊断,制定并实施契合企业发展战略的培训方案,系统提升建筑企业单位的核心竞争优势,有力支持企业的优良技术与持续发展。
人才培养
匹配建筑业不同岗位能力需求,打破技术边界,根据住建部和建筑企业模型来培养提供企业整体长期发展需要的人才。
技术优化
用环球优路的建筑工程实践研究成果帮助企业转型升级,趋向精细化、灵活化、价值化、技术化的管理。
企业资质和
对企业资质发展提供培训、咨询一体化服务,帮助企业顺利实现转型升级和盈利提升。
18项目管理基础知识及项目管理中的应用与协同!
项目管理的基础知识
1、项目管理的基本介绍
2、建筑全生命周期管理的基本介绍
3、BIM在项目管理中的作用与价值
BIM在项目管理中的应用与协同
1、BIM在项目各方管理中的应用
2、BIM在项目管理中的协同
3、BIM应用的总体实施
“BIM ”如何实现——透视BIM与九大技术集成应用(二)
BIM 智能型全站仪 施工测量是工程测量的重要内容,包括施工控制网的建立、建筑物的放样、施工期间的变形观测和竣工测量等内容。近年来,外观造型复杂的超大、超高建筑日益增多,测量放样主要使用全站型电子速测仪(简称全站仪)。随着新技术的应用,全站仪逐步向自动化、智能化方向发展。智能型全站仪由马达驱动,在相关应用程序控制下,在无人干预的情况下可自动完成多个目标的识别、照准与测量,且在无反射棱镜的情况下可对一般目标直接测距。 BIM与智能型全站仪集成应用,是**对软件、硬件进行整合,将BIM模型带入施工现场,利用模型中的三维空间坐标数据驱动智能型全站仪进行测量。二者集成应用,将现场测绘所得的实际建造结构信息与模型中的数据进行对比,核对现场施工环境与BIM模型之间的偏差,为机电、精装、幕墙等专业的深化设计提供依据。同时,基于智能型全站仪高效精确的放样定位功能,结合施工现场轴线网、控制点及标高控制线,可高效快速地将设计成果在施工现场进行标定,实现精确的施工放样,并为施工人员提供更加准确直观的施工指导。此外,基于智能型全站仪精确的现场数据采集功能,在施工完成后对现场实物进行实测实量,**对实测数据与设计数据进行对比,检查施工质量是否符合要求。 与传统放样方法相比,BIM与智能型全站仪集成放样,精度可控制在3毫米以内,而一般建筑施工要求的精度在1~2厘米,远超传统施工精度。传统放样**少要两人操作,BIM与智能型全站仪集成放样,一人一天可完成几百个点的精确定位,效率是传统方法的6~7倍。 目前,国外已有很多企业在施工中将BIM与智能型全站仪集成应用进行测量放样,而我国尚处于探索阶段,只有深圳市城市轨道交通9号线、深圳平安金融中心和北京望京SOHO等少数项目应用。未来,二者集成应用将与云技术进一步结合,使移动终端与云端的数据实现双向同步;还将与项目质量管控进一步融合,使质量控制和模型修正无缝融入原有工作流程,进一步提升BIM应用价值。 BIM GIS 地理信息系统是用于管理地理空间分布数据的计算机信息系统,以直观的地理图形方式获取、存储、管理、计算、分析和显示与地球表面位置相关的各种数据,英文缩写为GIS。BIM与GIS集成应用,是**数据集成、系统集成或应用集成来实现的,可在BIM应用中集成GIS,也可以在GIS应用中集成BIM,或是BIM与GIS深度集成,以发挥各自优势,拓展应用领域。目前,二者集成在城市规划、城市交通分析、城市微环境分析、市政管网管理、住宅小区规划、数字防灾、既有建筑改造等诸多领域有所应用,与各自单独应用相比,在建模质量、分析精度、决策效率、成本控制水平等方面都有明显提高。 BIM与GIS集成应用,可提高长线工程和大规模区域性工程的管理能力。BIM的应用对象往往是单个建筑物,利用GIS宏观尺度上的功能,可将BIM的应用范围扩展到道路、铁路、隧道、水电、港口等工程领域。如,邢汾高速公路项目开展BIM与GIS集成应用,实现了基于GIS的全线宏观管理、基于BIM的标段管理以及桥隧精细管理相结合的多层次施工管理。 BIM与GIS集成应用,可增强大规模公共设施的管理能力。现阶段,BIM应用主要集中在设计、施工阶段,而二者集成应用可解决大型公共建筑、市政及基础设施的BIM运维管理,将BIM应用延伸到运维阶段。如,昆明新机场项目将二者集成应用,成功开发了机场航站楼运维管理系统,实现了航站楼物业、机电、流程、库存、报修与巡检等日常运维管理和信息动态查询。 BIM与GIS集成应用,还可以拓宽和优化各自的应用功能。导航是GIS应用的一个重要功能,但仅限于室外。二者集成应用,不仅可以将GIS的导航功能拓展到室内,还可以优化GIS已有的功能。如利用BIM模型对室内信息的精细描述,可以保证在发生火灾时室内逃生路径是**合理的,而不再只是路径**短。 随着互联网的高速发展,基于互联网和移动通信技术的BIM与GIS集成应用,将改变二者的应用模式,向着网络服务的方向发展。当前,BIM和GIS不约而同地开始融合云计算这项新技术,分别出现了“云BIM”和“云GIS”的概念,云计算的引入将使BIM和GIS的数据存储方式发生改变,数据量级也将得到提升,其应用也会得到跨越式发展。 BIM 3D扫描 3D扫描是集光、机、电和计算机技术于一体的高新技术,主要用于对物体空间外形、结构及色彩进行扫描,以获得物体表面的空间坐标,具有测量速度快、精度高、使用方便等优点,且其测量结果可直接与多种软件接口。3D激光扫描技术又被称为实景复制技术,采用高速激光扫描测量的方法,可大面积高分辨率地快速获取被测量对象表面的3D坐标数据,为快速建立物体的3D影像模型提供了一种全新的技术手段。 3D激光扫描技术可有效完整地记录工程现场复杂的情况,**与设计模型进行对比,直观地反映出现场真实的施工情况,为工程检验等工作带来巨大帮助。同时,针对一些古建类建筑,3D激光扫描技术可快速准确地形成电子化记录,形成数字化存档信息,方便后续的修缮改造等工作。此外,对于现场难以修改的施工现状,可**3D激光扫描技术得到现场真实信息,为其量身定做装饰构件等材料。BIM与3D扫描集成,是将BIM模型与所对应的3D扫描模型进行对比、转化和协调,达到辅助工程质量检查、快速建模、减少返工的目的,可解决很多传统方法无法解决的问题。 BIM与3D激光扫描技术的集成,越来越多地被应用在建筑施工领域,在施工质量检测、辅助实际工程量统计、钢结构预拼装等方面体现出较大价值。如,将施工现场的3D激光扫描结果与BIM模型进行对比,可检查现场施工情况与模型、图纸的差别,协助发现现场施工中的问题,这在传统方式下需要工作人员拿着图纸、皮尺在现场检查,费时又费力。 再如,针对土方开挖工程中较难统计测算土方工程量的问题,可在开挖完成后对现场基坑进行3D激光扫描,基于点云数据进行3D建模,再利用BIM软件快速测算实际模型体积,并计算现场基坑的实际挖掘土方量。此外,**与设计模型进行对比,还可以直观了解基坑挖掘质量等其他信息。 上海中心大厦项目引入大空间3D激光扫描技术,**获取复杂的现场环境及空间目标的3D立体信息,快速重构目标的3D模型及线、面、体、空间等各种带有3D坐标的数据,再现客观事物真实的形态特性。同时,将依据点云建立的3D模型与原设计模型进行对比,检查现场施工情况,并**采集现场真实的管线及龙骨数据建立模型,作为后期装饰等专业深化设计的基础。BIM与3D扫描技术的集成应用,不仅提高了该项目的施工质量检查效率和准确性,也为装饰等专业深化设计提供了依据。 BIM 虚拟现实 虚拟现实,也称作虚拟环境或虚拟真实环境,是一种三维环境技术,集先进的计算机技术、传感与测量技术、仿真技术、微电子技术等为一体,借此产生逼真的视、听、触、力等三维感觉环境,形成一种虚拟世界。虚拟现实技术是人们运用计算机对复杂数据进行的可视化操作,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。 BIM技术的理念是建立涵盖建筑工程全生命周期的模型信息库,并实现各个阶段、不同专业之间基于模型的信息集成和共享。BIM与虚拟现实技术集成应用,主要内容包括虚拟场景构建、施工进度模拟、复杂局部施工方案模拟、施工成本模拟、多维模型信息联合模拟以及交互式场景漫游,目的是应用BIM信息库,辅助虚拟现实技术更好地在建筑工程项目全生命周期中应用。 BIM与虚拟现实技术集成应用,可提高模拟的真实性。传统的二维、三维表达方式,只能传递建筑物单一尺度的部分信息,使用虚拟现实技术可展示一栋活生生的虚拟建筑物,使人产生身临其境之感。并且,可以将任意相关信息整合到已建立的虚拟场景中,进行多维模型信息联合模拟。可以实时、任意视角查看各种信息与模型的关系,指导设计、施工,辅助监理、监测人员开展相关工作。 BIM与虚拟现实技术集成应用,可有效支持项目成本管控。据不完全统计,一个工程项目大约有30%的施工过程需要返工、60%的劳动力资源被浪费、10%的材料被损失浪费。不难推算,在庞大的建筑施工行业中每年约有万亿元的资金流失。BIM与虚拟现实技术集成应用,**模拟工程项目的建造过程,在实际施工前即可确定施工方案的可行性及合理性,减少或避免设计中存在的大多数错误;可以方便地分析出施工工序的合理性,生成对应的采购计划和财务分析费用列表,高效地优化施工方案;还可以提前发现设计和施工中的问题,对设计、预算、进度等属性及时更新,并保证获得数据信息的一致性和准确性。二者集成应用,在很大程度上可减少建筑施工行业中普遍存在的低效、浪费和返工现象,大大缩短项目计划和预算编制的时间,提高计划和预算的准确性。 BIM与虚拟现实技术集成应用,可有效提升工程质量。在施工之前,将施工过程在计算机上进行三维仿真演示,可以提前发现并避免在实际施工中可能遇到的各种问题,如管线碰撞、构件安装等,以便指导施工和制订**佳施工方案,从整体上提高建筑施工效率,确保工程质量,消除安全隐患,并有助于降低施工成本与时间耗费。 BIM与虚拟现实技术集成应用,可提高模拟工作中的可交互性。在虚拟的三维场景中,可以实时地切换不同的施工方案,在同一个观察点或同一个观察序列中感受不同的施工过程,有助于比较不同施工方案的优势与不足,以确定**佳施工方案。同时,还可以对某个特定的局部进行修改,并实时地与修改前的方案进行分析比较。此外,还可以直接观察整个施工过程的三维虚拟环境,快速查看到不合理或者错误之处,避免施工过程中的返工。虚拟施工技术在建筑施工领域的应用将是一个必然趋势,在未来的设计、施工中的应用前景广阔,必将推动我国建筑施工行业迈入一个崭新的时代。 BIM 3D打印 3D打印技术是一种快速成型技术,是以三维数字模型文件为基础,**逐层打印或粉末熔铸的方式来构造物体的技术,综合了数字建模技术、机电控制技术、信息技术、材料科学与化学等方面的前沿技术。 BIM与3D打印的集成应用,主要是在设计阶段利用3D打印机将BIM模型微缩打印出来,供方案展示、审查和进行模拟分析;在建造阶段采用3D打印机直接将BIM模型打印成实体构件和整体建筑,部分替代传统施工工艺来建造建筑。BIM与3D打印的集成应用,可谓两种革命性技术的结合,为建筑从设计方案到实物的过程开辟了一条“高速公路”,也为复杂构件的加工制作提供了更高效的方案。目前,BIM与3D打印技术集成应用有三种模式:基于BIM的整体建筑3D打印、基于BIM和3D打印制作复杂构件、基于BIM和3D打印的施工方案实物模型展示。 基于BIM的整体建筑3D打印。应用BIM进行建筑设计,将设计模型交付专用3D打印机,打印出整体建筑物。利用3D打印技术建造房屋,可有效降低人力成本,作业过程基本不产生扬尘和建筑垃圾,是一种绿色环保的工艺,在节能降耗和环境保护方面较传统工艺有非常明显的优势。 基于BIM和3D打印制作复杂构件。传统工艺制作复杂构件,受人为因素影响较大,精度和美观度不可避免地会产生偏差。而3D打印机由计算机操控,只要有数据支撑,便可将任何复杂的异型构件快速、精确地制造出来。BIM与3D打印技术集成进行复杂构件制作,不再需要复杂的工艺、措施和模具,只需将构件的BIM模型发送到3D打印机,短时间内即可将复杂构件打印出来,缩短了加工周期,降低了成本,且精度非常高,可以保障复杂异型构件几何尺寸的准确性和实体质量。 基于BIM和3D打印的施工方案实物模型展示。用3D打印制作的施工方案微缩模型,可以辅助施工人员更为直观地理解方案内容,携带、展示不需要依赖计算机或其他硬件设备,还可以360度全视角观察,克服了打印3D图片和三维视频角度单一的缺点。 随着各项技术的发展,现阶段BIM 与3D打印技术集成存在的许多技术问题将会得到解决,3D打印机和打印材料价格也会趋于合理,应用成本下降也会扩大3D打印技术的应用范围,提高施工行业的自动化水平。虽然在普通民用建筑大批量生产的效率和经济性方面,3D打印建筑较工业化预制生产没有优势,但在个性化、小数量的建筑上,3D打印的优势非常明显。随着个性化定制建筑市场的兴起,3D打印建筑在这一领域的市场前景非常广阔。 |