发布时间: 2016年03月28日
2016全国硕士研究生招生考试落下帷幕,2017考研的小伙伴们也该着手开始复习了,下面是考研提供的2017考研小知识:数学学科的深刻内涵。
一、数学学科概况
数学起源于人类远古时期生产、获取、分配、交易等活动中的计数、观测、丈量等需求,并很早就成为研究天文、航海、力学的有力工具。17世纪以来,物理学、力学等学科的发展和工业技术的崛起,与数学的迅速发展形成了强有力的相互推动。到19世纪,已形成了分析、几何、数论和代数等分支,概率已成为数学的研究对象,形式逻辑也逐步数学化。与此同时,在天体力学、弹性力学、流体力学、传热学、电磁学和统计物理中,数学成为不可缺少的定量描述语言和定量研究工具。
20世纪中,数学科学的迅猛发展进一步确立了它在整个科学技术领域中的基础和主导地位,并形成了当代数学的三个主要特征:数学内部各学科高度发展和相互之间不断交叉、融合的趋势;数学在其他领域中空前广泛的渗透和应用;数学与信息科学技术之间巨大的相互促进作用。
数学与科学技术一直以来的密切联系,在20世纪中叶以后更是达到了新的高度。第二次世界大战期间,数学在高速飞行、核武器设计、火炮控制、物资调运、密码破译和军事运筹等方面发挥了重大的作用,并涌现了一批新的应用数学学科。其后,随着电子计算机的迅速发展和普及,特别是数字化的发展,使数学的应用范围更为广阔,在几乎所有的学科和部门中得到了应用。数学技术已成为高技术中的一个极为重要的组成部分和思想库。另一方面,数学在向外渗透的过程中,与其他学科交叉,形成了诸如计算机科学、系统科学、模糊数学、智能计算(其中相当部分也被称为软计算)、智能信息处理、金融数学、生物数学、经济数学、数学生态学等一批新的交叉学科。
在21世纪,科学技术的突破日益依赖学科界限的打破和相互渗透,学科交叉已成为科技发展的显著特征和前沿趋势,数学也不例外。随着实验、观测、计算和模拟技术与手段的不断进步,数学作为定量研究的关键基础和有力工具,在自然科学、工程技术和社会经济等领域的发展研究中发挥着日益重要的作用。
二、数学学科内涵
数学,是以形式化、严密化的逻辑推理方式,研究客观世界中数量关系、空间形式及其运动、变化,以及更为一般的关系、结构、系统、模式等逻辑上可能的形态及其变化、扩展。数学的主要研究方法是逻辑推理,包括演绎推理与归纳推理。演绎推理是从一般性质对特定对象导出特定性质,归纳推理是从若干个别对象的个别性质导出一般性质。
由于数量关系、空间形式及其变化是许多学科研究对象的基本性质,数学作为这些基本性质的严密表现形式,成为一种精确的科学语言,成为许多学科的基础。20世纪,一方面,出现了一批新的数学学科分支,如泛函分析、拓扑学、数理逻辑等,创造出新的研究手段,扩大了研究对象,使学科呈现出抽象程度越来越高、分化越来越细的特点;另一方面,尤其是近二三十年来,不同分支学科的数学思想和方法相互交融渗透,许多高度抽象的概念、结构和理论,不仅成为数学内部联系的纽带,也已越来越多地成为科学技术领域广泛适用的语言。
作为20世纪中影响最为深远的科技成就之一,电子计算机的发明本身,也已充分展现了数学成果对于人类文明的辉煌贡献。从计算机的发明直到它最新的进展,数学都在起着关键性的作用;同时,在计算机的设计、制造、改进和使用过程中,也向数学提出了大量带有挑战性的问题,推动着数学本身的发展。计算机和软件技术已成为数学研究的新的强大手段,其飞速进步正在改变传统意义下的数学研究模式,并将为数学的发展带来难以预料的深刻变化。数值模拟、理论分析和科学实验鼎足而立,已成为当代科学研究的三大支柱。
数学作为一种文化,是人类文明的重要基础,它的产生和发展在人类文明的进程中起着重要的推动作用。数学作为最为严密的一种理性思维方式,对提高理性思维的能力具有重要的意义和作用。
热门推荐:
下一篇: 2017高等数学该如何准备?