发布时间: 2016年03月17日
假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。
为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。
这里所说的小概率事件就是事件 ,其概率就是检验水平α,通常我们取α=0.05,有时也取0.01或0.10。
基本步骤假设检验的基本步骤如下:
(i) 提出零假设H0;
(ii) 选择统计量K;
(iii) 对于检验水平α查表找分位数λ;
(iv) 由样本值 计算统计量之值K;
将 进行比较,作出判断:当 时否定H0,否则认为H0相容。
两类错误
第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,记 为犯此类错误的概率。
此处的α恰好为检验水平。
第二类错误当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,记 为犯此类错误的概率。
两类错误的关系人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时, 变小,则 变大;相反地, 变小,则 变大。取定 要想使 变小,则必须增加样本容量。
在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可“以假为真”、而不愿“以真当假”时,则应把α取得很小,如0.01,甚至0.001。反之,则应把α取得大些。
热门推荐: