一、抛物线的定义
平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 其
数学表达式:|MF|=d(其中d为点M到准线的距离).
猜你喜欢
高二数学椭圆知识点
二、焦半径
焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fèçæø÷ö
p2,0的距离|PF|=x0+p2.
猜你喜欢 圆的方程
三、求抛物线方程的方法
(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.
(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).
相关链接:
高中辅导
高一辅导
高二辅导
高考辅导